c Theory and

with

 Calculus

P

Prepare, Apply, Assess and Develop Employability Skills with MyLab Economics

MyLab ${ }^{\text {TM }}$ Economics is an online homework, tutorial, and assessment program constructed to work with this text to engage students and improve results. It was designed to help students develop and assess the skills and applicable knowledge that they will need to succeed in their courses and their future careers.

of students said
MyLab Economics helped them earn higher grades on homework, exams, or the course
*Source: 2017 Student Survey, n 13,862

See what more than 55,000 students had to say about MyLab Economics:

"MyLab Economics is the database for all 'need to know' information throughout the course. The major incentive is how much insight it gives when studying for a test."

- Economics Student,

Heaven Ferrel, ECPI University

Digital Interactives are

 dynamic and engaging activities that use real-time data from the Federal Reserve's Economic Data (FRED'M) to promote critical thinking and application of key economic principles.

Pearson

Question Help consists of homework and practice questions to give students unlimited opportunities to master concepts. Learning aids walk students through the problem-giving them assistance when they need it most.

"I love the 'Help Me Solve This' feature. It really helped me figure out what I was doing wrong and how to fix a problem rather than just saying 'wrong' or 'right'." - Student, Illinois State University

Dynamic Study Modules use the latest developments in cognitive science and help students study chapter topics by adapting to their performance in real time.

\% of students who found learning aids helpful

Pearson eText enhances student learning. Worked examples, videos, and interactive tutorials bring learning to life, while algorithmic practice and self-assessment opportunities test students' understanding of the material.
The Gradebook offers an easy way for you and your students to see their performance in your course.
89%.
of students would tell their instructor to keep using MyLab Economics

Featured Applications in This Book

Twinkie Tax 3
Income Threshold Model and China 3
Aggregating Corn Demand Curves 17
The Opioid Epidemic's Labor Market Effects 26
The Demand Elasticities for Google Play and Apple Apps 32
Oil Drilling in the Arctic National Wildlife Refuge 39
Subsidizing Ethanol 47
Venezuelan Price Ceilings and Shortages 51
You Can't Have Too Much Money 65
MRS Between Recorded Tracks and Live Music 75
Indifference Curves Between Food and Clothing 79
Utility Maximization for Recorded Tracks and Live Music 89
How You Ask a Question Matters 98
Cigarettes Versus E-Cigarettes 110
Fast-Food Engel Curve 116
Substituting Marijuana for Alcohol 122
Reducing the CPI Substitution Bias 134
Willingness to Pay and Consumer Surplus on eBay 146
Compensating Variation and Equivalent Variation for Smartphones and Facebook 150
Food Stamps Versus Cash 159
Fracking Causes Students to Drop Out 164
Chinese State-Owned Enterprises 179
Malthus and the Green Revolution 187
Self-Driving Trucks 192
Returns to Scale in Various Industries 199
Robots and the Food You Eat 203
A Good Boss Raises Productivity 204
The Opportunity Cost of an MBA 211
The Sharing Economy and the Short Run 215
Short-Run Cost Curves for a Japanese Beer Manufacturer 220
3D Printing 234
A Beer Manufacturer's Long-Run Cost Curves 236
Choosing an Inkjet or Laser Printer 237
Solar Power Learning Curves 240
Fracking and Shutdowns 264
The Size of Ethanol Processing Plants 272
Industries with High Entry and Exit Rates 274
Upward-Sloping Long-Run Supply Curve for Cotton 276
Reformulated Gasoline Supply Curves 280
What's a Name Worth? 294
The Deadweight Loss of Christmas Presents 301
Welfare Effects of Allowing Fracking 303
The Deadweight Loss from Gas Taxes 306
How Big Are Farm Subsidies and Who Gets Them? 310
The Social Cost of a Natural Gas Price Ceiling 312
Russian Food Ban 315
Partial-Equilibrium Versus Multimarket-Equilibrium Analysis in Corn and Soybean Markets 331
Urban Flight 335
Extremely Unequal Wealth 352
Amazon Prime Revenue 371
Apple's iPad 373
Taylor Swift Concert Pricing 375
The Botox Patent Monopoly 390
Natural Gas Regulation 395
Movie Studios Attacked by 3D Printers! 397

Critical Mass and eBay 399
Disneyland Pricing 415
Preventing Resale of Designer Bags 416
Botox and Price Discrimination 422
Google Uses Bidding for Ads to Price Discriminate 423
Tesla Price Discrimination 424
Age Discrimination 426
Buying Discounts 428
Pricing iTunes 437
Ties That Bind 438
Super Bowl Commercials 445
Strategic Advertising 460
Boomerang Millennials 465
Keeping Out Casinos 475
Bidder's Curse 480
GM's Ultimatum 481
Employer "No-Poaching" Cartels 497
Cheating on the Maple Syrup Cartel 499
Airline Mergers 500
Mobile Number Portability 508
How Do Costs, Price Markups, and Profits Vary Across Airlines 510
Differentiating Bottled Water Through Marketing 512
Rising Market Power 526
Monopolistically Competitive Food Truck Market 527
Subsidizing the Entry Cost of Dentists 531
Black Death Raises Wages 549
Saving for Retirement 554
Durability of Telephone Poles 558
Behavioral Economics: Falling Discount Rates and Self-Control 560
Redwood Trees 566
Risk of a Cyberattack 577
Stocks' Risk Premium 584
Gambling 586
Failure to Diversify 592
Flight Insurance 594
Flooded by Insurance Claims 595
Biased Estimates 600
Disney's Positive Externality 612
Spam: A Negative Externality 617
Why Tax Drivers 620
Buying a Town 627
Acid Rain Program 628
Road Congestion 630
Microsoft Word Piracy 631
Free Riding on Measles Vaccinations 634
What's Their Beef? 636
Discounts for Data 653
Adverse Selection and Remanufactured Goods 654
Reducing Consumers' Information 657
Cheap Talk in eBay's Best Offer Market 662
Honest Cabbie? 678
Sing for Your Supper 685
Health Insurance and Moral Hazard 689
Capping Oil and Gas Bankruptcies 693
Walmart's Efficiency Wages 695
Layoffs Versus Pay Cuts 697

MICROECONOMICS

THEORY AND APPLICATIONS WITH CALCULUS

FIFTH EDITION

This page intentionally left blank

MICROECONOMICS

 THEORY AND APPLICATIONS WITH CALCULUSFIFTH EDITION

JEFFREY M. PERLOFF

University of California, Berkeley

Vice President, Business, Economics, and UK Courseware: Donna Battista
Director of Portfolio Management: Adrienne D'Ambrosio
Specialist Portfolio Manager: Christopher DeJohn
Editorial Assistant: Aly Grindall
Vice President, Product Marketing: Roxanne McCarley
Senior Product Marketer: Carlie Marvel
Product Marketing Assistant: Marianela Silvestri
Manager of Field Marketing, Business Publishing: Adam Goldstein
Field Marketing Manager: Ashley Bryan
Vice President, Production and Digital Studio, Arts and Business: Etain O'Dea
Director, Production and Digital Studio, Business and Economics: Ashley Santora
Managing Producer, Business: Alison Kalil
Content Producer: Carolyn Philips

Operations Specialist: Carol Melville
Design Lead: Kathryn Foot
Manager, Learning Tools: Brian Surette
Senior Learning Tools Strategist: Emily Biberger
Managing Producer, Digital Studio and GLP: James Bateman
Managing Producer, Digital Studio: Diane Lombardo
Digital Studio Producer: Melissa Honig
Digital Studio Producer: Alana Coles
Digital Content Team Lead: Noel Lotz
Digital Content Project Lead: Courtney Kamaouf
Full Service Project Management: Pearson CSC, Nicole
Suddeth and Kathy Smith
Interior Design: Pearson CSC
Cover Design: Pearson CSC
Cover Art: Simon Gribkov/EyeEm, GettyImages
Printer/Binder: LSC Communications, Inc./Willard
Cover Printer: Phoenix Color/Hagerstown

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft ${ }^{\circledR}$ and Windows ${ }^{\circledR}$ are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.
Copyright © 2020, 2017, 2014 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Manufactured in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on page E-109, which constitutes an extension of this copyright page.
PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.
Cataloging-in-Publication Data is available on file at the Library of Congress

Brief Contents

Preface xiv
Chapter 1 Introduction 1
Chapter 2 Supply and Demand 10
Chapter 3 A Consumer's Constrained Choice 62
Chapter 4 Demand 105
Chapter 5 Consumer Welfare and Policy Analysis 142
Chapter 6 Firms and Production 177
Chapter 7 Costs 209
Chapter 8 Competitive Firms and Markets 248
Chapter 9 Properties and Applications of the Competitive Model 290
Chapter 10 General Equilibrium and Economic Welfare 327
Chapter 11 Monopoly and Monopsony 365
Chapter 12 Pricing and Advertising 412
Chapter 13 Game Theory 452
Chapter 14 Oligopoly and Monopolistic Competition 490
Chapter 15 Factor Markets 539
Chapter 16 Uncertainty 574
Chapter 17 Property Rights, Externalities, Rivalry, and Exclusion 610
Chapter 18 Asymmetric Information 645
Chapter 19 Contracts and Moral Hazards 672
Calculus Appendix E-1
Regression Appendix E-29
Answers to Selected Exercises E-32
Definitions E-53
References E-59
Sources for Applications and Challenges E-68
Index E-77
Credits E-109

Contents

Preface xiv
Chapter 1 Introduction 1
1.1 Microeconomics: The Allocation of Scarce Resources 1
Trade-Offs 2
Who Makes the Decisions 2
How Prices Determine Allocations 2
APPLICATION Twinkie Tax 3
1.2 Models 3
APPLICATION Income Threshold Model and China 3
Simplifications by Assumption 4
Testing Theories 5
Maximizing Subject to Constraints 5
Positive Versus Normative 6
New Theories 7
1.3 Uses of Microeconomic Models in Your Life and Career 8
Summary 9
Chapter 2 Supply and Demand 10
CHALLENGE Quantities and Prices of Genetically Modified Foods 10
2.1 Demand 11
The Demand Function 12
Summing Demand Functions 16
APPLICATION Aggregating Corn Demand Curves 17
2.2 Supply 17
The Supply Function 18
Summing Supply Functions 20
How Government Import Policies Affect Supply Curves 20
2.3 Market Equilibrium 21
Finding the Market Equilibrium 22
Forces That Drive a Market to Equilibrium 23
2.4 Shocking the Equilibrium: Comparative Statics 24
Comparative Statics with Discrete (Large) Changes 25
APPLICATION The Opioid Epidemic's Labor Market Effects 26
Comparative Statics with Small Changes 26
Solved Problem 2.1 28
Why the Shapes of Demand and Supply
Curves Matter 29
2.5 Elasticities 30
Demand Elasticity 30
Solved Problem 2.2 31
APPLICATION The Demand Elasticities for Google Play and Apple Apps 32
Solved Problem 2.3 35
Supply Elasticity 36
Solved Problem 2.4 38
Long Run Versus Short Run 38
APPLICATION Oil Drilling in the Arctic National Wildlife Refuge 39
Solved Problem 2.5 40
2.6 Effects of a Sales Tax 41
Effects of a Specific Tax on the Equilibrium 42
The Same Equilibrium No Matter Who Is Taxed 44
Firms and Customers Share the Burden of the Tax 44
Solved Problem 2.6 46
APPLICATION Subsidizing Ethanol 47
The Similar Effects of Ad Valorem and Specific Taxes 47
2.7 Quantity Supplied Need Not Equal Quantity
Demanded 48
Price Ceiling 49
APPLICATION Venezuelan Price Ceilings and Shortages 51
Price Floor 52
2.8 When to Use the Supply-and-Demand Model 53
CHALLENGE SOLUTION Quantities and Prices of Genetically Modified Foods 54
Summary 55 Exercises 56
Chapter 3 A Consumer's Constrained Choice 62
CHALLENGE Why Americans Buy E-Books and Germans Do Not 62
3.1 Preferences 64
Properties of Consumer Preferences 64
APPLICATION You Can't Have Too Much Money 65
Preference Maps 66
Indifference Curves 67
Solved Problem 3.1 69
3.2 Utility 69
Utility Function 69
Willingness to Substitute Between Goods 72
Solved Problem 3.2 74
APPLICATION MRS Between Recorded Tracks and Live Music 75
Curvature of Indifference Curves 75
Solved Problem 3.3 78
APPLICATION Indifference Curves Between Food and Clothing 79
3.3 Budget Constraint 79
3.4 Constrained Consumer Choice 81
Finding an Interior Solution Using Graphs 82
Solved Problem 3.4 84
Finding an Interior Solution Using Calculus 84
Solved Problem 3.5 86
Solved Problem 3.6 87
Solved Problem 3.7 89
APPLICATION Utility Maximization for Recorded Tracks and Live Music 89
Finding Corner Solutions 90
Minimizing Expenditure 94
Solved Problem 3.8 95
3.5 Behavioral Economics 96
Tests of Transitivity 97
Endowment Effect 97
application How You Ask a Question Matters 98
Salience 98
CHALLENGE SOLUTION Why Americans Buy E-Books and Germans Do Not 100
Summary 100 Exercises 101
Chapter 4 Demand 105
CHALLENGE Paying Employees to Relocate 105
4.1 Deriving Demand Curves 106
System of Demand Functions 106
Graphical Interpretation 107
APPLICATION Cigarettes Versus E-Cigarettes 110
4.2 Effects of an Increase in Income 110
How Income Changes Shift Demand Curves 111
Solved Problem 4.1 112
Consumer Theory and Income Elasticities 113
Solved Problem 4.2 114
APPLICATION Fast-Food Engel Curve 116
Solved Problem 4.3 118
4.3 Effects of a Price Increase 118
Income and Substitution Effects with a Normal Good 119
Solved Problem 4.4 121
APPLICATION Substituting Marijuana for Alcohol 122
Solved Problem 4.5 122
Income and Substitution Effects with an Inferior Good 123
Solved Problem 4.6 123
Compensated Demand Curve 124
Solved Problem 4.7 127
Slutsky Equation 127
4.4 Cost-of-Living Adjustment 129
Inflation Indexes 129
Effects of Inflation Adjustments 131
APPLICATION Reducing the CPI Substitution Bias 134
4.5 Revealed Preference 135
Recovering Preferences 135
Substitution Effect 136
CHALLENGE SOLUTION Paying Employees to Relocate 137
Summary 138 Exercises 139
Chapter 5 Consumer Welfare and Policy Analysis 142
Challenge Per-Hour Versus Lump-Sum Childcare Subsidies 142
5.1 Uncompensated Consumer Welfare 143
Willingness to Pay 144
An Individual's Consumer Surplus 144
A Market's Consumer Surplus 145
APPLICATION Willingness to Pay and Consumer Surplus on eBay 146
Effect of a Price Change on Consumer Surplus 147
Solved Problem 5.1 147
5.2 Compensated Consumer Welfare 148
Indifference Curve Analysis 148
APPLICATION Compensating Variation
and Equivalent Variation for Smartphones and Facebook 150
Compensated Demand Curves and Consumer Welfare 151
Comparing the Three Welfare Measures 152
Solved Problem 5.2 154
5.3 Effects of Government Policies on Consumer Welfare 155
Quotas 155
Food Stamps 157
application Food Stamps Versus Cash 159
5.4 Deriving Labor Supply Curves 159
Labor-Leisure Choice 159
Solved Problem 5.3 162
Income and Substitution Effects 163
Solved Problem 5.4 164
APPLICATION Fracking Causes Students to Drop Out 164
Solved Problem 5.5 165
Shape of the Labor Supply Curve 166
Income Tax Rates and the Labor Supply Curve 167
Solved Problem 5.6 169
Challenge solution Per-Hour Versus
Lump-Sum Childcare Subsidies 170
Summary 172 Exercises 173
Chapter 6 Firms and Production 177
CHALLENGE Labor Productivity During Downturns 177
6.1 The Ownership and Management of Firms 178
Private, Public, and Nonprofit Firms 178
APPLICATION Chinese State-Owned Enterprises 179
The Ownership of For-Profit Firms 179
The Management of Firms 180
What Owners Want 180
6.2 Production 181
Production Functions 181
Time and the Variability of Inputs 181
6.3 Short-Run Production: One Variable and One Fixed Input 182
Solved Problem 6.1 183
Interpretation of Graphs 184
Solved Problem 6.2 186
Law of Diminishing Marginal Returns 186
APPLICATION Malthus and the Green Revolution 187
6.4 Long-Run Production: Two Variable Inputs 189
Isoquants 189
APPLICATION Self-Driving Trucks 192
Substituting Inputs 193
Solved Problem 6.3 194
Diminishing Marginal Rates of Technical Substitution 194
The Elasticity of Substitution 194
Solved Problem 6.4 197
6.5 Returns to Scale 197
Constant, Increasing, and Decreasing Returns to Scale 197
Solved Problem 6.5 198
APPLICATION Returns to Scale in Various Industries 199
Varying Returns to Scale 200
6.6 Productivity and Technical Change 201
Relative Productivity 201
Innovations 202
APPLICATION Robots and the Food You Eat 203
APPLICATION A Good Boss Raises Productivity 204
CHALLENGE SOLUTION Labor
Productivity During Downturns 204
Summary 205 - Exercises 206
Chapter 7 Costs 209
CHALLENGE Technology Choice at Home Versus Abroad 209
7.1 Measuring Costs 210
Opportunity Costs 211
APPLICATION The Opportunity Cost of an MBA 211
Solved Problem 7.1 212
Opportunity Cost of Capital 212
Sunk Costs 213
7.2 Short-Run Costs 214
Short-Run Cost Measures 214
APPLICATION The Sharing Economy and the Short Run 215
Solved Problem 7.2 216
Short-Run Cost Curves 217
Production Functions and the Shape of Cost Curves 218
APPLICATION Short-Run Cost Curves for a Japanese Beer Manufacturer 220
Effects of Taxes on Costs 221
Short-Run Cost Summary 221
7.3 Long-Run Costs 222
Input Choice 223
Solved Problem 7.3 226
Solved Problem 7.4 228
How Long-Run Cost Varies with Output 230
Solved Problem 7.5 231
Solved Problem 7.6 233
The Shape of Long-Run Cost Curves 233
APPLICATION 3D Printing 234
Estimating Cost Curves Versus Introspection 235
7.4 Lower Costs in the Long Run 235
Long-Run Average Cost as the Envelope of Short-Run Average Cost Curves 235
APPLICATION A Beer Manufacturer's Long-Run Cost Curves 236
APPLICATION Choosing an Inkjet or Laser Printer 237
Short-Run and Long-Run Expansion Paths 238
How Learning by Doing Lowers Costs 238
APPLICATION Solar Power Learning Curves 240
7.5 Cost of Producing Multiple Goods 240
ChALLENGE SOLUTION Technology Choice at Home Versus Abroad 242
Summary 243 Exercises 244
Chapter 8 Competitive Firms and Markets 248
CHALLENGE The Rising Cost of Keeping On Truckin' 248
8.1 Perfect Competition 249
Price Taking 249
Why a Firm's Demand Curve Is Horizontal 250
Perfect Competition in the Chicago Commodity Exchange 251
Deviations from Perfect Competition 251
Derivation of a Competitive Firm's Demand Curve 252
Solved Problem 8.1 254
Why Perfect Competition Is Important 254
8.2 Profit Maximization 254
Profit 255
Two Steps to Maximizing Profit 256
8.3 Competition in the Short Run 259
Short-Run Competitive Profit Maximization 259
Solved Problem 8.2 261
APPLICATION Fracking and Shutdowns 264
Short-Run Firm Supply Curve 265
Solved Problem 8.3 266
Short-Run Market Supply Curve 267
Short-Run Competitive Equilibrium 269
Solved Problem 8.4 270
8.4 Competition in the Long Run 271
Long-Run Competitive Profit Maximization 271
Long-Run Firm Supply Curve 271
APPLICATION The Size of Ethanol Processing Plants 272
Long-Run Market Supply Curve 273
application Industries with High Entry and Exit Rates 274
APPLICATION Upward-Sloping Long-Run Supply Curve for Cotton 276
APPLICATION Reformulated Gasoline Supply Curves 280
Solved Problem 8.5 281
Long-Run Competitive Equilibrium 282
CHALLENGE SOLUTION The Rising Cost of Keeping On Truckin' 283
Summary 284 Exercises 285
Chapter 9 Properties and Applications of the Competitive Model 290
CHALLENGE Liquor Licenses 290
9.1 Zero Profit for Competitive Firms in the Long Run 291
Zero Long-Run Profit with Free Entry 291
Zero Long-Run Profit When Entry Is Limited 292
APPLICATION What's a Name Worth? 294
The Need to Maximize Profit 294
9.2 Producer Surplus 294
Measuring Producer Surplus Using a Supply Curve 294
Using Producer Surplus 296
Solved Problem 9.1 296
9.3 Competition Maximizes Welfare 297
Measuring Welfare 298
Why Producing Less Than the Competitive Output Lowers Welfare 298
Solved Problem 9.2 300
APPLICATION The Deadweight Loss of Christmas Presents 301
9.4 Policies That Shift Supply or Demand Curves 302
APPLICATION Welfare Effects of Allowing Fracking 303
9.5 Policies That Create a Wedge Between Supply and Demand Curves 304
Welfare Effects of a Sales Tax 304
APPLICATION The Deadweight Loss from Gas Taxes 306
Welfare Effects of a Price Floor 306
Solved Problem 9.3 309
APPLICATION How Big Are Farm Subsidies and Who Gets Them? 310
Welfare Effects of a Price Ceiling 310
Solved Problem 9.4 311
APPLICATION The Social Cost of a Natural Gas Price Ceiling 312
9.6 Comparing Both Types of Policies: Trade 312
Free Trade Versus a Ban on Imports 313
Solved Problem 9.5 315
APPLICATION Russian Food Ban 315
Free Trade Versus a Tariff 316
Solved Problem 9.6 318
A Tariff Versus a Quota 319
Rent Seeking 320
CHALLENGE SOLUTION Liquor Licenses 321
Summary 322 Exercises 323
Chapter 10 General Equilibrium and Economic Welfare 327
CHALLENGE Anti-Price Gouging Laws 327
10.1 General Equilibrium 329
Competitive Equilibrium in Two Interrelated Markets 330
APPLICATION Partial-Equilibrium Versus Multimarket-Equilibrium Analysis in Corn and Soybean Markets 331
Minimum Wages with Incomplete Coverage 332
Solved Problem 10.1 334
APPLICATION Urban Flight 335
10.2 Trading Between Two People 335
Endowments 335
Mutually Beneficial Trades 337
Solved Problem 10.2 339
Deriving the Contract Curve 339
Solved Problem 10.3 340
Bargaining Ability 340
10.3 Competitive Exchange 340
Competitive Equilibrium 341
Solved Problem 10.4 343
The Efficiency of Competition 343
Obtaining Any Efficient Allocation Using Competition 343
10.4 Production and Trading 344
Comparative Advantage 344
Solved Problem 10.5 346
Efficient Product Mix 348
Competition 348
10.5 Efficiency and Equity 350
Role of the Government 350
Efficiency 351
Equity 351
APPLICATION Extremely Unequal Wealth 352
Efficiency Versus Equity 357
Theory of the Second Best 358
CHALLENGE SOLUTION Anti-Price Gouging Laws 360
Summary 361 Exercises 361
Chapter 11 Monopoly and Monopsony 365
CHALLENGE Brand-Name and Generic Drugs 365
11.1 Monopoly Profit Maximization 367
The Necessary Condition for Profit Maximization 367
Marginal Revenue and the Demand Curves 367
Solved Problem 11.1 369
Marginal Revenue Curve and the Price Elasticity of Demand 369
APPLICATION Amazon Prime Revenue 371
An Example of Monopoly Profit Maximization 371
APPLICATION Apple's iPad 373
Solved Problem 11.2 373
Choosing Price or Quantity 375
APPLICATION Taylor Swift Concert Pricing 375
Solved Problem 11.3 375
Effects of a Shift of the Demand Curve 376
11.2 Market Power and Welfare 377
Market Power and the Shape of the Demand Curve 377
The Lerner Index 379
Solved Problem 11.4 379
Sources of Market Power 380
Effect of Market Power on Welfare 380
11.3 Taxes and Monopoly 381
Effects of a Specific Tax 382
Solved Problem 11.5 383
Welfare Effects of Ad Valorem Versus Specific Taxes 385
11.4 Causes of Monopolies 386
Cost Advantages 386
Solved Problem 11.6 388
Government Actions That Create Monopolies 388
APPLICATION The Botox Patent Monopoly 390
11.5 Government Actions That Reduce Market Power 391
Regulating Monopolies 391
Solved Problem 11.7 393
APPLICATION Natural Gas Regulation 395
Increasing Competition 396
APPLICATION Movie Studios Attacked by 3D Printers! 397
Solved Problem 11.8 397
11.6 Internet Monopolies: Networks Effects, Behavioral Economics, and Economies of Scale 398
Network Externalities 398
APPLICATION Critical Mass and eBay 399
Introductory Prices: A Two-Period Monopoly Model 400
Two-Sided Markets 400
Economies of Scale on the Internet 401
Disruptive Technologies 401
11.7 Monopsony 402
Monopsony Profit Maximization 402
Welfare Effects of Monopsony 404
Solved Problem 11.9 405
CHALLENGE SOLUTION Brand-Name and Generic Drugs 406
Summary 407 Exercises 407
Chapter 12 Pricing and Advertising 412
Challenge Sale Price 412
12.1 Conditions for Price Discrimination 414
Why Price Discrimination Pays 414
Which Firms Can Price Discriminate 414
APPLICATION Disneyland Pricing 415
Preventing Resale 415
APPLICATION Preventing Resale of Designer Bags 416
Not All Price Differences Are Price Discrimination 416
Types of Price Discrimination 417
12.2 Perfect Price Discrimination 417
How a Firm Perfectly Price Discriminates 417
Solved Problem 12.1 419
Perfect Price Discrimination Is Efficient but Harms Some Consumers 420
application Botox and Price Discrimination 422
Transaction Costs and Perfect Price Discrimination 423
APPLICATION Google Uses Bidding for Ads to Price Discriminate 423
12.3 Group Price Discrimination 423
APPLICATION Tesla Price Discrimination 424
Prices and Elasticities 425
APPLICATION Age Discrimination 426
Solved Problem 12.2 426
Identifying Groups 428
APPLICATION Buying Discounts 428
Solved Problem 12.3 429
Welfare Effects of Group Price Discrimination 430
12.4 Nonlinear Price Discrimination 431
12.5 Two-Part Pricing 433
Two-Part Pricing with Identical Consumers 434
Two-Part Pricing with Differing Consumers 435
APPLICATION Pricing iTunes 437
12.6 Tie-In Sales 437
Requirement Tie-In Sales 438
application Ties That Bind 438
Bundling 438
12.7 Advertising 441
Deciding Whether to Advertise 442
How Much to Advertise 443
Solved Problem 12.4 444
APPLICATION Super Bowl Commercials 445
CHALLENGE SOLUTION Sale Price 445
Summary 447 Exercises 447
Chapter 13 Game Theory 452
CHALLENGE Intel and AMD's Advertising Strategies 452
13.1 Static Games 454
Normal-Form Games 455
Failure to Maximize Joint Profits 458
APPLICATION Strategic Advertising 460
Pricing Games in Two-Sided Markets 461
Multiple Equilibria 462
Solved Problem 13.1 463
Mixed Strategies 464
APPLICATION Boomerang Millennials 465
Solved Problem 13.2 466
13.2 Repeated Dynamic Games 466
Strategies and Actions in Dynamic Games 467
Cooperation in a Repeated Prisoners' Dilemma Game 467
Solved Problem 13.3 469
13.3 Sequential Game 469
Game Tree 469
Subgame Perfect Nash Equilibrium 470
Credibility 472
Dynamic Entry Game 473
Solved Problem 13.4 475
APPLICATION Keeping Out Casinos 475
Solved Problem 13.5 476
13.4 Auctions 477
Elements of Auctions 477
Bidding Strategies in Private-Value Auctions 479
Winner's Curse 480
APPLICATION Bidder's Curse 480
13.5 Behavioral Game Theory 481
APPLICATION GM's Ultimatum 481
CHALLENGE SOLUTION Intel and AMD's Advertising Strategies 482
Chapter 14 Oligopoly and Monopolistic Competition 490
CHALLENGE Government Aircraft Subsidies 490
14.1 Market Structures 492
14.2 Cartels 493
Why Cartels Form 494
Why Cartels Fail 495
Laws Against Cartels 496
APPLICATION Employer "No-Poaching" Cartels 497
Maintaining Cartels 498
APPLICATION Cheating on the Maple Syrup Cartel 499
Mergers 500
APPLICATION Airline Mergers 500
14.3 Cournot Oligopoly Model 501
The Duopoly Nash-Cournot Equilibrium 501
The Cournot Model with Many Firms 505
APPLICATION Mobile Number Portability 508
The Cournot Model with Nonidentical Firms 509
Solved Problem 14.1 509
APPLICATION How Do Costs, Price Markups, and Profits Vary Across Airlines? 510
Solved Problem 14.2 511
APPLICATION Differentiating Bottled
Water Through Marketing 512
14.4 Stackelberg Oligopoly Model 512
Calculus Solution 513
Graphical Solution 514
Why Moving Sequentially Is Essential 515
Strategic Trade Policy: An Application of the Stackelberg Model 515
Solved Problem 14.3 518
Comparison of Collusive, Nash-Cournot, Stackelberg, and Competitive Equilibria 519
14.5 Bertrand Oligopoly Model 520
Nash-Bertrand Equilibrium with Identical Products 521
Nash-Bertrand Equilibrium with Differentiated Products 523
APPLICATION Rising Market Power 526
14.6 Monopolistic Competition 526
APPLICATION Monopolistically Competitive Food Truck Market 527
Monopolistically Competitive Equilibrium 528
Fixed Costs and the Number of Firms 529
Solved Problem 14.4 530
APPLICATION Subsidizing the Entry Cost of Dentists 531
CHALLENGE SOLUTION Government Aircraft Subsidies 531
Chapter 15 Factor Markets 539
CHALLENGE Does Going to College Pay? 539
15.1 Factor Markets 540
A Firm's Short-Run Factor Demand Curve 540
Solved Problem 15.1 543
A Firm's Long-Run Factor Demand Curves 545
Competitive Factor Markets 547
APPLICATION Black Death Raises Wages 549
Solved Problem 15.2 550
15.2 Capital Markets and Investing 550
Interest Rates 551
Discount Rate 552
Stream of Payments 552
APPLICATION Saving for Retirement 554
Investing 554
Solved Problem 15.3 556
Solved Problem 15.4 557
Durability 557
APPLICATION Durability of Telephone Poles 558
Time-Varying Discounting 559
APPLICATION Behavioral Economics: Falling Discount Rates and Self-Control 560
Capital Markets, Interest Rates, and Investments 560
Solved Problem 15.5 561
15.3 Exhaustible Resources 562
When to Sell an Exhaustible Resource 562
Price of a Scarce Exhaustible Resource 563
APPLICATION Redwood Trees 566
Why Price Might Not Rise 567
CHALLENGE SOLUTION Does Going to College Pay? 568
Summary 570 - Exercises 570
Chapter 16 Uncertainty 574
CHALLENGE BP and Limited Liability 574
16.1 Assessing Risk 575
Probability 576
APPLICATION Risk of a Cyberattack 577
Expected Value 578
Solved Problem 16.1 578
Variance and Standard Deviation 579
16.2 Attitudes Toward Risk 580
Expected Utility Theory 580
Risk Aversion 581
Solved Problem 16.2 583
Solved Problem 16.3 584
APPLICATION Stocks' Risk Premium 584
Risk Neutrality 585
Risk Preference 586
APPLICATION Gambling 586
Degree of Risk Aversion 587
Solved Problem 16.4 589
16.3 Reducing Risk 589
Just Say No 589
Obtaining Information 590
Diversification 590
APPLICATION Failure to Diversify 592
Insurance 592
Solved Problem 16.5 593
APPLICATION Flight Insurance 594
APPLICATION Flooded by Insurance Claims 595
16.4 Investing Under Uncertainty 596
How Investing Depends on Attitudes Toward Risk 596
Investing with Uncertainty and Discounting 598
Solved Problem 16.6 598
16.5 Behavioral Economics and Uncertainty 599
Biased Assessment of Probabilities 599
Application Biased Estimates 600
Violations of Expected Utility Theory 601
Prospect Theory 602
Comparing Expected Utility and Prospect Theories 603
CHALLENGE SOLUTION BP and Limited Liability 604
Summary 605 Exercises 606
Chapter 17 Property Rights, Externalities, Rivalry, and Exclusion 610
CHALLENGE Trade and Pollution 610
17.1 Externalities 611
APPLICATION Disney's Positive Externality 612
17.2 The Inefficiency of Competition with Externalities 612
Supply-and-Demand Analysis 613
Cost-Benefit Analysis 615
APPLICATION Spam: A Negative Externality 617
17.3 Regulating Externalities 617
Emissions Standard 618
Emissions Fee and Effluent Charge 619
Solved Problem 17.1 620
APPLICATION Why Tax Drivers 620
Benefits Versus Costs from Controlling Pollution 621
Taxes Versus Standards Under Uncertainty 621
17.4 Market Structure and Externalities 623
Monopoly and Externalities 623
Monopoly Versus Competitive Welfare with Externalities 624
Solved Problem 17.2 624
Taxing Externalities in Noncompetitive Markets 625
17.5 Allocating Property Rights to Reduce Externalities 625
Coase Theorem 626
APPLICATION Buying a Town 627
Markets for Pollution 628
APPLICATION Acid Rain Program 628
17.6 Rivalry and Exclusion 629
Open-Access Common Property 629
APPLICATION Road Congestion 630
Club Goods 631
APPLICATION Microsoft Word Piracy 631
Public Goods 632
Solved Problem 17.3 633
APPLICATION Free Riding on Measles Vaccinations 634
Solved Problem 17.4 636
Reducing Free Riding 636
APPLICATION What's Their Beef? 636
Valuing Public Goods 637
CHALLENGE SOLUTION Trade and Pollution 638
Summary 640 Exercises 640
Chapter 18 Asymmetric Information 645
CHALLENGE Dying to Work 645
18.1 Adverse Selection 647
Insurance Markets 647
Products of Unknown Quality 648
Solved Problem 18.1 650
Solved Problem 18.2 651
18.2 Reducing Adverse Selection 652
Equalizing Information 652
APPLICATION Discounts for Data 653
APPLICATION Adverse Selection and
Remanufactured Goods 654
Laws to Prevent Opportunism 655
18.3 Price Discrimination Due to False
Beliefs About Quality 656
APPLICATION Reducing Consumers' Information 657
18.4 Market Power from Price Ignorance 657
Tourist-Trap Model 658
Solved Problem 18.3 659
Advertising and Prices 660
18.5 Problems Arising from Ignorance When Hiring 660
Cheap Talk 660
APPLICATION Cheap Talk in eBay's Best Offer Market 662
Education as a Signal 662
Solved Problem 18.4 663
Screening in Hiring 666
CHALLENGE SOLUTION Dying to Work 667
Chapter 19 Contracts and Moral Hazards 672
CHALLENGE Clawing Back Bonuses 672
19.1 Principal-Agent Problem 674
A Model 675
Types of Contracts 675
Efficiency 676
Solved Problem 19.1 677
APPLICATION Honest Cabbie? 678
19.2 Production Efficiency 678
Efficient Contract 678
Full Information 680
Solved Problem 19.2 683
Asymmetric Information 684
APPLICATION Sing for Your Supper 685
19.3 Trade-Off Between Efficiency in Production and in Risk Bearing 686
Contracts and Efficiency 686
Solved Problem 19.3 687
Choosing the Best Contract 688
APPLICATION Health Insurance and Moral Hazard 689
Solved Problem 19.4 690
19.4 Monitoring to Reduce Moral Hazard 691
Bonding 691
Solved Problem 19.5 692
APPLICATION Capping Oil and Gas
Bankruptcies 693
Deferred Payments 694
Efficiency Wages 694
APPLICATION Walmart's Efficiency Wages 695
After-the-Fact Monitoring 695
19.5 Contract Choice 696
19.6 Checks on Principals 697
application Layoffs Versus Pay Cuts 697
CHALLENGE SOLUTION Clawing
Back Bonuses 699
Summary 700 Exercises 701
Calculus Appendix E-1
Regression Appendix E-29
Answers to Selected Exercises E-32
Definitions E-53
References E-59
Sources for Applications and Challenges E-68
Index E-77
Credits E-109

Preface

This book is a new type of intermediate microeconomics textbook. Previously, the choice was between books that use calculus to present formal theory dryly and with few, if any, applications to the real world and books that include applications but present theory using algebra and graphs only. This book uses calculus, algebra, and graphs to present microeconomic theory based on actual examples and then uses the theory to analyze real-world problems. My purpose is to show that economic theory has practical, problem-solving uses and is not an empty academic exercise.

This book shows how individuals, policymakers, and firms use microeconomic tools to analyze and resolve problems. For example, students learn that:

- individuals can draw on microeconomic theories when deciding whether to invest and whether to sign a contract that pegs prices to the government's measure of inflation;
- policymakers (and voters) can employ microeconomics to predict the impact of taxes, regulations, and other measures before they are enacted;
- lawyers and judges use microeconomics in antitrust, discrimination, and contract cases; and
- firms apply microeconomic principles to produce at least cost and maximize profit, select strategies, decide whether to buy from a market or to produce internally, and write contracts to provide optimal incentives for employees.

My experience in teaching microeconomics for the departments of economics at the Massachusetts Institute of Technology; the University of Pennsylvania; the University of California, Berkeley; the Department of Agricultural and Resource Economics at Berkeley; and the Wharton Business School has convinced me that students prefer this emphasis on real-world issues.

Changes in the Fifth Edition

This edition is substantially revised:

- It added an extensive Appendix on basic calculus (which was available only online in the previous edition).
- It includes two new features: Common Confusions and Unintended Consequences. Common Confusions describe a widely held belief that economic theory or evidence rejects. Unintended Consequences describe how some policies and other actions have potent side-effects beyond the intended ones.
- All the chapters are moderately to substantially revised and updated, including the many examples embedded in the chapters, Solved Problems, end-of-chapter problems, and other features.
- Of this edition’s 128 Applications, 81% are new (26%) or revised (55%). Sixty percent of the Applications are international or concern countries other than the United States. In addition, we've added 23 Applications to MyLab Economics, bringing the total number of additional Applications online to 238.
- Compared to the previous edition, this edition has 7 additional figures (215 total), 2 more photos (52), and 4 new cartoons (22), which I claim illustrate important economic concepts.

Revised Chapters

Some of the major changes in the presentation of theories in the chapters include:
Supply and Demand. Chapter 2 was generally rewritten and has a revised section on taxes.

Consumer Theory. The most important changes to Chapters 3-5 include a major revision to the consumer surplus section, an embedded example based on UberX, more details about federal marginal tax rates, and a new Solved Problem.

Production and Costs. Chapter 6 has a new discussion of kinked isoquants based on self-driving trucks and a revised discussion of efficiency and a revised Challenge Solution. Chapter 7 also has a revised discussion of efficiency and a revised Challenge Solution.

Competition. Chapters 8 and 9 have revised Challenge Solutions and a Solved Problem, a new Solved Problem, a revised section comparing tariffs to quotas, a revised discussion of efficiency and market failures including adding a discussion of allocative inefficiency. This edition now systematically defines deadweight loss as a positive number in this chapter and in subsequent chapters.

General Equilibrium and Economic Welfare. Chapter 10 has a revised Solved Problem.

Monopoly. Chapter 11 has many changes. The previous section on Network Externalities was replaced with a new section, Internet Monopolies: Network Externalities, Behavioral Economics, and Natural Monopoly, which emphasizes new economic challenges in internet industries. Subsections include new discussions of two-sided markets and disruptive technologies. It includes a revised and a new Solved Problem.

Pricing and Advertising. Chapter 12 has many new examples. The key price discrimination analysis now uses Tesla car sales in the United States and in Europe (based on actual data, as always). Its discussions on identifying groups, two-part pricing, the mathematical parts of the Challenge Solution, and several figures are revised. One of the Solved Problems is new.

Game Theory and Oligopoly. Chapter 13 on game theory has two new Solved Problems. It uses new examples to illustrate the theory. It has a new two-sided market section. Its section on Dynamic Games is revised. It has new material on limit pricing and double auctions. Chapter 14 has revised discussions of strategic trade and differentiated products and new figures and a table.

Factor Markets. Chapter 15 includes a new discussion on the frequency of compounding. The Challenge Solution is revised.

Uncertainty. Chapter 16 has a revised section on the risk premium and now formally defines certainty equivalence.

Externalities and Public Goods. Chapter 17 has a new Solved Problem. The section on public goods is completely revised including the figure.

Asymmetric Information. Chapter 18 has revisions to the sections on Products of Unknown Quality and Universal Coverage. It includes a new section on noisy monopoly.

Challenges, Solved Problems, and End-of-Chapter Exercises

The Solved Problems (which show students how to answer problems using a step-by-step approach) and Challenges (which combine an Application with a Solved Problem) are very popular with students, so this edition increases the number by 6 to 116 . After Chapter 1, each chapter starts with a Challenge (a problem based on an Application) and ends with its solution. In addition, many of the Solved Problems are linked to Applications. Each Solved Problem has at least one similar end-of-chapter exercise, which allows students to demonstrate that they've mastered the concept in the Solved Problem.

This edition has 809 end-of-chapter exercises, which is over 8% more than in the last edition. Of the total, 12% are new or revised and updated. Every end-of-chapter exercise is available in MyLab Economics. Students can click on the end-of-chapter exercise in the eText to go to MyLab Economics to complete the exercise online, get tutorial help, and receive instant feedback.

How This Book Differs from Others

Microeconomics: Theory and Applications with Calculus differs from most other microeconomics texts in four main ways, all of which help professors teach and students learn. First, it uses a mixture of calculus, algebra, and graphs to define economic theory. Second, it integrates estimated, real-world examples throughout the exposition, in addition to offering extended Applications. Third, it places greater emphasis on modern theories-such as industrial organization theories, game theory, transaction cost theory, information theory, contract theory, and behavioral economics-that are useful in analyzing actual markets. Fourth, it employs a step-by-step approach that demonstrates how to use microeconomic theory to solve problems and analyze policy issues.

To improve student results, I recommend pairing the text content with MyLab Economics, which is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and will help your students learn and retain key course concepts while developing skills that future employers are seeking in their candidates. MyLab Economics allows professors increased
flexibility in designing and teaching their courses. Learn more at www.pearson.com/ mylab/economics.

Solving Teaching and Learning Challenges

In the features of the book and MyLab Economics, I show how to apply theory and analysis learned in the classroom to solving problems and understanding real-world market issues outside of class.

Using Calculus to Make Theory Clear to Students

Microeconomic theory is primarily the study of maximizing behavior. Calculus is particularly helpful in solving maximization problems, while graphs help illustrate how to maximize. This book combines calculus, algebra, graphs, and verbal arguments to make the theory as clear as possible.

Real-World Examples and Applications

To convince students that economics is practical and useful-not just a textbook exercise-this book presents theories using examples of real people and real firms based on actual market data rather than artificial examples. These real economic stories are integrated into the formal presentation of many economic theories, discussed in Applications, and analyzed in what-if policy discussions.

Integrated Real-World Examples. This book uses real-world examples throughout the narrative to illustrate many basic theories of microeconomics. Students learn the basic model of supply and demand using estimated supply-and-demand curves for corn and coffee. They analyze consumer choice by employing estimated indifference curves between live music and music tracks. They see estimates of the consumer welfare from UberX. They learn about production and cost functions using estimates from a wide variety of firms. Students see monopoly theory applied to a patented pharmaceutical, Botox. They use oligopoly theories to analyze the rivalry between United Airlines and American Airlines on the Chicago-Los Angeles route, and between Coke and Pepsi in the cola industry. They see Apple's monopoly pricing of iPads and learn about multimarket price discrimination through the use of data on how Tesla sets prices across countries.

Applications. The text includes many Applications at the end of sections that illustrate the versatility of microeconomic theory. The Applications focus on such diverse topics as:

- the derivation of an isoquant for semiconductors, using actual data;
- how 3D printing affects firms' decisions about scale and its flexibility over time and is undermining movie studios;
- the amount by which recipients value Christmas presents relative to the cost to gift givers;
- why oil companies that use fracking are more likely to shut down;
- whether buying flight insurance makes sense;
- whether going to college pays.

APPLICATION
Welfare Effects of Allowing Fracking

Technological advances have made hydraulic fracturing-fracking-a practical means to extract natural gas as well as oil from shale formations that previously could not be exploited (see the Application "Fracking and Shutdowns" in Chapter 8). Opponents of fracking fear that it pollutes air and water and triggers earthquakes. Due to their opposition, governments limit or prohibit fracking in parts of the United States and Europe.

Hausman and Kellogg (2015) used estimated natural gas supply and demand curves to calculate the welfare effects of permitting fracking firms to enter the gas market. They found that the rightward shift of the supply curve reduced the U.S. natural gas price by 47% in 2013 . As a result, consumer surplus increased substantially, particularly in the south central and midwestern United States, where the industrial and electric power industries use large quantities of gas. This drop in price was sufficient to reduce producer surplus. Hausman and Kellogg concluded that the total surplus increased by $\$ 48$ billion, but noted that this calculation ignores any possible harmful environmental effects.

What-If Policy Analysis. This book uses economic models to probe the likely outcomes of changes in public policies. Students learn how to conduct what-if analyses of policies such as taxes, subsidies, barriers to entry, price floors and ceilings, quotas and tariffs, zoning, pollution controls, and licensing laws. The text analyzes the effects of taxes on virtually every type of market. The book also reveals the limits of economic theory for policy analysis. For example, to illustrate why attention to actual institutions is important, the text uses three different models to show how the effects of minimum wages vary across types of markets and institutions. Similarly, the text illustrates that a minimum wage law that is harmful in a competitive market may be desirable in certain noncompetitive markets.

Modern Theories

The first half of the book (Chapters 2-10) examines competitive markets and shows that competition has very desirable properties. The rest of the book (Chapters 11-19) concentrates on imperfectly competitive markets-in which firms have market power (the ability to profitably set price above the unit cost of production), firms and consumers are uncertain about the future and have limited information, a market has an externality, or a market fails to provide a public good. This book goes beyond basic microeconomic theory and looks at theories and applications from many important contemporary fields of economics. It extensively covers problems from resource economics, labor economics, international trade, public finance, and industrial organization. The book uses behavioral economics to discuss consumer choice, bandwagon effects on monopoly pricing over time, and the importance of time-varying discounting in explaining procrastination and in avoiding environmental disasters. This book differs from other microeconomics texts by using game theory throughout the second half rather than isolating the topic in a single chapter. The book introduces game theory in Chapter 13, analyzing both static games (such as the prisoners' dilemma) and multi-period games (such as collusion and preventing entry). Special attention is paid to auction strategies. Chapters 14, 16, 17, 18, and 19 employ game theory to analyze oligopoly behavior and many other topics. Unlike most texts,
this book covers pure and mixed strategies and analyzes both normal-form and extensive-form games. The last two chapters draw from modern contract theory to extensively analyze adverse selection and moral hazard, unlike other texts that mention these topics only in passing, if at all. The text covers lemons markets, signaling, shirking prevention, and revealing information (including through contract choice).

Step-by-Step Problem Solving

Many instructors report that their biggest challenge in teaching microeconomics is helping students learn to solve new problems. This book is based on the belief that the best way to teach this important skill is to demonstrate problem solving repeatedly and then to give students exercises to do on their own. Each chapter (after Chapter 1) provides several Solved Problems that show students how to answer qualitative and quantitative problems using a step-by-step approach. Rather than empty arithmetic exercises demanding no more of students than employing algebra or a memorized mathematical formula, the Solved Problems focus on important economic issues such as analyzing government policies and determining firms' optimal strategies.

One Solved Problem uses game theory to examine why Intel and AMD use different advertising strategies in the central processing unit (CPU) market. Another shows how a monopolistically competitive airline equilibrium would change if fixed costs (such as fees for landing slots) rise. Others examine why firms charge different prices at factory stores than elsewhere and when markets for lemons exist, among many other topics.

The Solved Problems illustrate how to approach the formal end-of-chapter exercises. Students can solve some of the exercises using graphs or verbal arguments, while others require math.

SOLVED PROBLEM 18.1

MyLab Economics
Solved Problem

Suppose that everyone in our used-car example is risk neutral; potential car buyers value lemons at $\$ 4,000$ and good used cars at $\$ 8,000$; the reservation price of lemon owners is $\$ 3,000$; and the reservation price of owners of high-quality used cars is $\$ 7,000$. The share of current owners who have lemons is θ. (In our previous example, the share was $\left.\theta=\frac{1}{2}=1,000 /[1,000+1,000]\right)$. For what values of θ do all the potential sellers sell their used cars? Describe the equilibrium.

Answer

1. Determine how much buyers are willing to pay if all cars are sold. Because buyers are risk neutral, if they believe that the probability of getting a lemon is θ, the most they are willing to pay for a car of unknown quality is

$$
\begin{aligned}
& p=[\$ 8,000 \times(1-\theta)]+(\$ 4,000 \times \theta)=\$ 8,000-(\$ 4,000 \times \theta) . \\
& \text { For example, } p=\$ 6,000 \text { if } \theta=\frac{1}{2} \text { and } p=\$ 7,000 \text { if } \theta=\frac{1}{4} .
\end{aligned}
$$

2. Solve for the values of θ such that all the cars are sold, and describe the equilibrium. All owners will sell if the market price equals or exceeds their reservation price, $\$ 7,000$. Using Equation 18.1, we know that the market (equilibrium) price is $\$ 7,000$ or more if a quarter or fewer of the used cars are lemons, $\theta \leq \frac{1}{4}$. Thus, for $\theta \leq \frac{1}{4}$, all the cars are sold at the price given in Equation 18.1.

MyLab Economics Videos

Today's students learn best when they analyze and discuss topics in the text outside of class. To further students' understanding of what they are reading and discussing in the classroom, we provide a set of videos in MyLab Economics. In these videos, Tony Lima presents key figures, tables, and concepts in step-by-step animations with audio explanations that discuss the economics behind each step.

Developing Career Skills

This book helps you develop valuable career skills. Whether you want to work in business, government, academia, or in other areas, a solid knowledge of economics is invaluable. Employers know that you need economic skills to perform well. They also know that the more rigorous and mathematically based your training, the better you will be at logical thinking.

- Studies show that job seekers with an undergraduate degree who have economics and math training generally receive higher salaries than those with degrees in most other fields. Law schools and MBA programs are more likely to admit students with economics and math training than others, because they know how useful these skills are as well as the training in logic thinking. This training also increases your chances of getting into top graduate programs in economics, agricultural and resource economics, public policy, urban planning, and other similar fields, which is a necessary step for many careers in academia, government, and consulting.
- This book starts by illustrating how to use economic reasoning to analyze and solve a variety of problems. It trains you to use logical analysis based on empirical evidence. You will learn how to apply a variety of verbal, graphical, and mathematical techniques to solve the types of problems that governments, firms, and other potential employers face on a daily basis. In addition to training you in traditional economic analysis, this book shows you how to use game theory, behavioral economics, and other cutting-edge theories to confront modern-day challenges. For example, you'll see how firms develop contracts to motivate workers and executives to perform well, analyze how oligopolistic firms develop strategies; why online platforms (two-sided markets) that bring buyers and sellers together, such as eBay, are highly concentrated; and how disruptive innovations such as 3D printing affect markets.

Alternative Organizations

Because instructors cover material in many different orders, the text permits maximum flexibility. The most common approach to teaching microeconomics is to cover some or all of the chapters in their given sequence. Common variants include:

- presenting uncertainty (Sections 16.1 through 16.3) immediately after consumer theory;
- covering competitive factor markets (Section 15.1) immediately after competition (Chapters 8 and 9);
- introducing game theory (Chapter 13) early in the course; and
- covering general equilibrium and welfare issues (Chapter 10) at the end of the course instead of immediately after the competitive model.

Instructors can present the material in Chapters 13-19 in various orders, although Section 16.4 should follow Chapter 15, and Chapter 19 should follow Chapter 18 if both are covered.

Many business school courses skip consumer theory (and possibly some aspects of supply and demand) to allow more time for the topics covered in the second half of the book. Business school faculty may want to place particular emphasis on game theory, strategies, oligopoly, and monopolistic competition (Chapters 13 and 14); capital markets (Chapter 15); uncertainty (Chapter 16); and modern contract theory (Chapters 18 and 19).

Instructor Teaching Resources

This book has a full range of supplementary materials that support teaching and learning. This program comes with the following teaching resources:

Supplements available to instructors at www.pearsonhighered.com	Features of the Supplement
Instructor's Manual Authored by Leonie Stone of SUNY Geneseo	- Chapter Outlines include key terminology, teaching notes, and lecture suggestions. - Teaching Tips and Additional Applications provide tips for alternative ways to cover the material and brief reminders on additional help to provide students. - Solutions are provided for all problems in the book.
Test Bank Authored by Xin Fang of Hawaii Pacific University	- Multiple-choice problems of varying levels of complexity, suitable for homework assignments and exams - Many of these draw on current news and events
Computerized TestGen	TestGen allows instructors to: - Customize, save, and generate classroom tests - Edit, add, or delete questions from the Test Item Files - Analyze test results - Organize a database of tests and student results.
PowerPoints Authored by James Dearden of Lehigh University	- Slides include all the graphs, tables, and equations in the textbook, as well as lecture notes. - PowerPoints meet accessibility standards for students with disabilities. Features include, but are not limited to: - Keyboard and Screen Reader access - Alternative text for images - High color contrast between background and foreground colors

Acknowledgments

This book evolved from my earlier, less-mathematical, intermediate microeconomics textbook. I thank the many faculty members and students who helped me produce both books, as well as Jane Tufts, who provided invaluable editorial help on my earlier text. I was very lucky that Sylvia Mallory, who worked on the earlier book, was my development editor on the first edition of this book as well. Sylvia worked valiantly to improve my writing style and helped to shape and improve every aspect of the book's contents and appearance.

Denise Clinton, Digital Editor, and Adrienne D'Ambrosio, my outstanding Executive Acquisitions Editor, worked closely with Sylvia and me in planning the book and were instrumental in every phase of the project. In this edition, Chris DeJohn, Executive Portfolio Manager, and Carolyn Philips, Content Producer, were involved in each step of this revision and provided invaluable help with the online resources.

I have an enormous debt of gratitude to my students at MIT; the University of Pennsylvania; and the University of California, Berkeley, who dealt patiently with my various approaches to teaching them microeconomics and made useful (and generally polite) suggestions. Peter Berck, Ethan Ligon, and Larry Karp, my colleagues at the University of California, Berkeley, made many useful suggestions. Guojun He, Yann Panassie, and Hugo Salgado were incredibly helpful in producing figures, researching many of the Applications, or making constructive comments on chapter drafts.

Many people were very generous in providing me with data, models, and examples for the various Applications and Solved Problems in various editions of this book, including among others: Thomas Bauer (University of Bochum); Peter Berck (deceased); James Brander (University of British Columbia); Alex Chun (Business Intelligence Manager at Sungevity); Leemore Dafny (Northwestern University); Lucas Davis (University of California, Berkeley); James Dearden (Lehigh University); Farid Gasmi (Université des Sciences Sociales); Avi Goldfarb (University of Toronto); Claudia Goldin (Harvard University); Rachel Goodhue (University of California, Davis); William Greene (New York University); Nile Hatch (University of Illinois); Larry Karp (University of California, Berkeley); Ryan Kellogg (University of Michigan); Arthur Kennickell (Federal Reserve, Washington); Fahad Khalil (University of Washington); Lutz Killian (University of Michigan); J. Paul Leigh (University of California, Davis); Christopher Knittel (Massachusetts Institute of Technology); Jean-Jacques Laffont (deceased); Ulrike Malmendier (University of California, Berkeley); Karl D. Meilke (University of Guelph); Eric Muehlegger (Harvard University); Giancarlo Moschini (Iowa State University); Michael Roberts (North Carolina State University); Junichi Suzuki (University of Toronto); Catherine Tucker (MIT); Harald Uhlig (University of Chicago); Quang Vuong (Université des Sciences Sociales, Toulouse, and University of Southern California); and Joel Waldfogel (University of Minnesota).

I am grateful to the many teachers of microeconomics who spent untold hours reading and commenting on chapter drafts. Many of the best ideas in this book are due to the following individuals who provided valuable comments at various stages:
R. K. Anderson, Texas A $\begin{aligned} & \text { M }\end{aligned}$

Fernando Aragon, Simon Fraser University
Richard Beil, Auburn University
Kenny Bell, University of California, Berkeley
Robert A. Berman, American University
Douglas Blair, Rutgers University
James Brander, University of British Columbia Jurgen Brauer, Augusta State University

Margaret Bray, London School of Economics Helle Bunzel, Iowa State University Paul Calcott, Victoria University of Wellington Lauren Calimeris, University of Colorado at Boulder Anoshua Chaudhuri, San Francisco State University Finn Christensen, Towson University Anthony Davies, Duquesne University James Dearden, Lehigh University

Stephen Devadoss, Texas Tech University
Wayne Edwards, University of Alaska, Anchorage
Steven Elliot, University of Miami
Susan Elmes, Columbia University
Patrick M. Emerson, Oregon State University
Eduardo Faingold, Yale University
Rachael Goodhue, University of California, Davis
Ron Goettler, Carnegie Mellon University, Doha, Qatar
Thomas Gresik, University of Notre Dame
Barnali Gupta, Miami University
Per Svejstrup Hansen, University of Southern Denmark Joannes Jacobsen, University of the Faroe Islands
Byoung Heon Jun, Korea University
Rebecca Judge, St. Olaf College
Johnson Kakeu, Georgia Institute of Technology
Süleyman Keçeli, Pamukkale University
Vijay Krishna, University of North Carolina, Chapel Hill
Alberto Lamadrid, Lehigh University
Stephen Lauermann, University of Michigan
Gordon Lenjosek, University of Ottawa
Tony Lima, Cal State East Bay
Holly Liu, UC Davis
Urzo Luttmer, Dartmouth University
Vikram Manjunath, Texas A $\circlearrowleft M$ University
Carrie A. Meyer, George Mason University
Joshua B. Miller, University of Minnesota, Twin Cities
Laurie Miller, University of Nebraska Lincoln
Stephen M. Miller, University of Nevada, Las Vegas

Olivia Mitchell, University of Pennsylvania
Jeffery Miron, Harvard University
Shalah Mostashari, Texas A $\begin{aligned} & \text { M University } \\ & \text { Felix Naschold, University of Wyoming } \\ & \text { Orgul Ozturk, University of Southern Carolina } \\ & \text { Alexandre Padilla, Metropolitan State College of Denver } \\ & \text { Michael R. Ransom, Brigham Young University } \\ & \text { Alfonso Sánchez-Peñalver, University of Massachusetts, } \\ & \text { Boston } \\ & \text { Riccardo Scarpa, University of Waikato, New Zealand } \\ & \text { Burkhard C. Schipper, University of California, Davis } \\ & \text { Riccardo Scarpa, University of Waikato } \\ & \text { Galina A. Schwartz, University of California, Berkeley } \\ & \text { Kevin Shaver, University of Pittsburgh } \\ & \text { Steven Snyder, Lehigh University } \\ & \text { Barry Sopher, Rutgers University } \\ & \text { Ilya Sorvachev, New Economic School, Russia } \\ & \text { Stephen Snyder, University of Pittsburgh } \\ & \text { Scott Templeton, Clemson University } \\ & \text { Etku Unver, Boston College } \\ & \text { Ruth Uwaifo, Georgia Institute of Technology } \\ & \text { Rodrigo Velez, Texas A } M \text { University } \\ & \text { Ron S. Warren, Jr., University of Georgia } \\ & \text { Ryan Blake Williams, TexasTech University } \\ & \text { Christopher Wright, Montana State University } \\ & \text { Bruce Wydick, University of California, San Francisco } \\ & \text { Albert Zeveley, Wharton School, University } \\ & \text { of Pennsylvania }\end{aligned}$
I am particularly grateful to Jim Brander of the University of British Columbia who has given me many deep and insightful comments on this book. One of my biggest debts is to Jim Dearden, who not only provided incisive comments on every aspect of my earlier textbook, but also wrote a number of the end-of-chapter exercises. I am very grateful to Ethan Ligon for co-authoring the Calculus Appendix.

For this edition, my biggest debts are to Tony Lima and Gordon Lenjosek. Tony prepared the many excellent MyLab Economics Videos. Gordon extremely carefully checked for typographic and other errors in the previous edition and suggested better ways to present many topics.

In addition, I thank Bob Solow, the world's finest economics teacher, who showed me how to simplify models without losing their essence. I've also learned a great deal over the years about economics and writing from my co-authors on other projects, especially Dennis Carlton (my co-author on Modern Industrial Organization), Jackie Persons, Steve Salop, Michael Wachter, Larry Karp, Peter Berck, Amos Golan, George Judge, Ximing Wu, and Dan Rubinfeld (whom I thank for still talking to me despite my decision to write microeconomics textbooks).

It was a pleasure to work with the good people at Pearson CSC, who were incredibly helpful in producing this book. Kathy Smith and Nicole Suddeth did a superlative job of supervising the production process and assembling the extended publishing team. I also want to acknowledge, with gratitude, the efforts of Melissa Honig in developing the MyLab Economics course, along with Noel Lotz and Courtney Kamauf.

Finally, I thank my family, Jackie Persons and Lisa Perloff, for their great patience and support during the nearly endless writing process. And I apologize for misusing their names-and those of my other relatives and friends-in this book!

This page intentionally left blank

Introduction

An Economist's Theory of Reincarnation: If you're good, you come back on a higher level. Cats come back as dogs, dogs come back as horses, and people-if they've been really good like George Washington-come back as money.

If each of us could get all the food, clothing, and toys we want without working, no one would study economics. Unfortunately, most of the good things in life are scarce-we can't all have as much as we want. Thus, scarcity is the mother of economics.

Microeconomics is the study of how individuals and firms make themselves as well off as possible in a world of scarcity, and the consequences of those individual decisions for markets and the entire economy. In studying microeconomics, we examine how individual consumers and firms make decisions and how the interaction of many individual decisions affects markets.

Microeconomics is often called price theory to emphasize the important role that prices play in determining market outcomes. Microeconomics explains how the actions of all buyers and sellers determine prices, and how prices influence the decisions and actions of individual buyers and sellers.

In this chapter, we discuss three main topics

1. Microeconomics: The Allocation of Scarce Resources. Microeconomics is the study of the allocation of scarce resources.
2. Models. Economists use models to make testable predictions.
3. Uses of Microeconomic Models in Your Life and Career. Individuals, governments, and firms use microeconomic models and predictions in decision making.

1.1 Microeconomics: The Allocation of Scarce Resources

Individuals and firms allocate their limited resources to make themselves as well off as possible. Consumers select the mix of goods and services that makes them as happy as possible given their limited wealth. Firms decide which goods to produce, where to produce them, how much to produce to maximize their profits, and how to produce those levels of output at the lowest cost by using more or less of various inputs such as labor, capital, materials, and energy. The owners of a depletable natural resource such as oil decide when to use it. Government decision makers decide which goods and services the government will produce and whether to subsidize, tax, or regulate industries and consumers to benefit consumers, firms, or government employees.

Trade-Offs

People make trade-offs because they can't have everything. A society faces three key trade-offs:

1. Which goods and services to produce. If a society produces more cars, it must produce fewer of other goods and services, because it has only a limited amount of resources-workers, raw materials, capital, and energy-available to produce goods.
2. How to produce. To produce a given level of output, a firm must use more of one input if it uses less of another input. For example, cracker and cookie manufacturers switch between palm oil and coconut oil, depending on which is less expensive.
3. Who gets the goods and services. The more of society's goods and services you get, the less someone else gets.

Who Makes the Decisions

The government may make these three allocation decisions explicitly, or the final decisions may reflect the interaction of independent decisions by many individual consumers and firms. In the former Soviet Union, the government told manufacturers how many cars of each type to make and which inputs to use to make them. The government also decided which consumers would get cars.

In most other countries, how many cars of each type are produced and who gets them are determined by how much it costs to make cars of a particular quality in the least expensive way and how much consumers are willing to pay for them. More consumers would own a handcrafted Rolls-Royce and fewer would buy a mass-produced Toyota Camry if a Rolls were not 14 times more expensive than a Camry.

How Prices Determine Allocations

Prices link the decisions about which goods and services to produce, how to produce them, and who gets them. Prices influence the decisions of individual consumers and firms, and the interactions of these decisions by consumers, firms, and the government determine price.

Interactions between consumers and firms take place in a market, which is an exchange mechanism that allows buyers to trade with sellers. A market may be a town square where people go to trade food and clothing, or it may be an international telecommunications network over which people buy and sell financial securities. Typically, when we talk about a single market, we are referring to trade in a single good or a group of goods that are closely related, such as soft drinks, movies, novels, or automobiles.

Most of this book concerns how prices are determined within a market. We show that the organization of the market, especially the number of buyers and sellers in the market and the amount of information they have, helps determine whether the price equals the cost of production. We also show that in the absence of a market (and market price), serious problems, such as high pollution levels, result.

APPLICATION

Twinkie Tax

Many government actions affect prices and hence the allocation decisions.
Many U.S., Australian, British, Canadian, New Zealand, and Taiwanese jurisdictions have or are considering imposing a Twinkie tax on unhealthful fatty and sweet foods or a tax on sugary soft drinks to reduce obesity and cholesterol problems, particularly among children. A 2017 poll found that 57% of the U.S. public supports "taxing soda and other sugary drinks to raise money for pre-school and children's health programs and help address the problem of obesity."

In recent years, many communities around the world debated and some passed new taxes on sugar-sweetened soft drinks. New beverage taxes went into effect in Mexico in 2014; Cook County, Illinois, in 2016; United Kingdom in 2018; and San Francisco, California, in 2018. At least 34 states differentially tax soft drinks, candy, chewing gum, and snack foods such as potato chips. These taxes affect prices and decisions people make. In addition, many U.S. school districts ban soft drink vending machines. These bans discourage consumption, as would an extremely high tax.

Taxes and bans affect which foods are produced, as firms offer new low-fat and low-sugar products, and how fast-foods are produced, as manufacturers reformulate their products to lower their tax burden. These taxes also influence who gets these goods as consumers, especially children, replace them with relatively less expensive, untaxed products. ${ }^{1}$

1.2 Models

Everything should be made as simple as possible, but not simpler. -Albert Einstein
To explain how individuals and firms allocate resources and how market prices are determined, economists use a model: a description of the relationship between two or more variables. Economists also use models to predict how a change in one variable will affect another variable.

APPLICATION

Income Threshold Model and China

According to an income threshold model, people whose incomes are below a threshold do not buy a particular consumer durable, while many people whose income exceeds that threshold buy it.

If this theory is correct, we predict that, as most people's incomes rise above the threshold in lower-income countries, consumer durable purchases will increase from near zero to large numbers virtually overnight. This prediction is consistent with evidence from Malaysia, where the income threshold for buying a car is about \$4,000.

In China, incomes have risen rapidly and now exceed the threshold levels for many types of durable goods. In response to higher incomes, Chinese car purchases have taken off. For example, Li Rifu, a 46-year-old Chinese farmer and watch

[^0]repairman, thought that buying a car would improve the odds that his 22 - and 24 -year-old sons would find girlfriends, marry, and produce grandchildren. Soon after Mr. Li purchased his Geely King Kong for the equivalent of \$9,000, both sons met girlfriends, and his older son got married.

Given the rapid increase in Chinese incomes in the past couple of decades, four-fifths of all new cars sold in China are bought by first-time customers. An influx of first-time buyers was responsible for Chinese car sales increasing by a factor of nearly 18 between 2000 and 2017. In 2005, China produced fewer than half as many cars as the United States. In 2017, China was by far the largest producer of cars in the world, producing one out of every three cars in the world. It produced nearly three times as many cars as the United States-the second largest producer-as well as 39% more than the entire European Union. One out of every three cars is produced in China.

Simplifications by Assumption

We stated the income threshold model verbally, but we could have presented it graphically or mathematically. Regardless of how the model is described, an economic model is a simplification of reality that contains only reality's most important features. Without simplifications, it is difficult to make predictions because the real world is too complex to analyze fully.

By analogy, if the owner's manual accompanying a new DVD recorder had a diagram showing the relationships among all the parts in the recorder, the diagram would be overwhelming and useless. But a diagram that includes a photo of the buttons on the front of the machine, with labels describing the purpose of each, is useful and informative.

Economists make many assumptions to simplify their models. ${ }^{2}$ When using the income threshold model to explain car-purchasing behavior in China, we assume that factors other than income, such as the vehicles' color choices, are irrelevant to the decision to buy cars. Therefore, we ignore the color of cars that are sold in China when we describe the relationship between average income and the number of cars that consumers want. If our assumption is correct, we make our auto market analysis simpler without losing important details by ignoring color. If we're wrong and these ignored issues are important, our predictions may be inaccurate.

Throughout this book, we start with strong assumptions to simplify our models. Later, we add complexities. For example, in most of the book, we assume that consumers know each firm's price for a product. In many markets, such as the New York Stock Exchange, this assumption is realistic. However, it is not realistic in other markets, such as the market for used automobiles, in which consumers do not know the prices that each firm charges. To devise an accurate model for markets in which consumers have limited information, in Chapter 16, we add consumer uncertainty about price into the model.

[^1]

An alternative theory.

Testing Theories

Blore's Razor: Given a choice between two theories, take the one which is funnier.

Economic theory is the development and use of a model to formulate bypotheses, which are predictions about cause and effect. We are interested in models that make clear, testable predictions, such as "If the price rises, the quantity demanded falls." A theory stating that "People's behaviors depend on their tastes, and their tastes change randomly at random intervals" is not very useful because it does not lead to testable predictions.

Economists test theories by checking whether predictions are correct. If a prediction does not come true, economists may reject the theory. ${ }^{3}$ Economists use a model until it is refuted by evidence or until a better model is developed.

A good model makes sharp, clear predictions that are consistent with reality. Some very simple models make sharp predictions that are incorrect, and other, more complex models make ambiguous predictions-in which any outcome is possible-that are untestable. The skill in model building is to chart a middle ground.

The purpose of this book is to teach you how to think like an economist, in the sense that you can build testable theories using economic models or apply existing models to new situations. Although economists think alike, in that they develop and use testable models, they often disagree. One may present a logically consistent argument that prices will go up in the next quarter. Another economist, using a different but equally logical theory, may contend that prices will fall in that quarter. If the economists are reasonable, they agree that pure logic alone cannot resolve their dispute. Indeed, they agree that they'll have to use empirical evidence-facts about the real world-to determine which prediction is correct.

Maximizing Subject to Constraints

Although one economist's model may differ from another's, a key assumption in most microeconomic models is that individuals allocate their scarce resources to make themselves as well off as possible. Of all the affordable combinations of goods,

[^2]consumers pick the bundle of goods that gives them the most possible enjoyment. Firms try to maximize their profits given limited resources and existing technology. That resources are limited plays a crucial role in these models. Were it not for scarcity, people could consume unlimited amounts of goods and services, and sellers could become rich beyond limit.

As we show throughout this book, the maximizing behavior of individuals and firms determines society's three main allocation decisions: which goods are produced, how they are produced, and who gets them. For example, diamond-studded pocket combs will be sold only if firms find it profitable to sell them. The firms will make and sell these combs only if consumers value the combs at least as much as it costs the firm to produce them. Consumers will buy the combs only if they get more pleasure from the combs than they would from other goods they could buy with the same resources.

Many of the models that we examine are based on maximizing an objective that is subject to a constraint. Consumers maximize their well-being subject to a budget constraint, which says that their resources limit how many goods they can buy. Firms maximize profits subject to technological and other constraints. Governments may try to maximize the welfare of consumers or firms subject to constraints imposed by limited resources and the behavior of consumers and firms. We cover the formal economic analysis of maximizing behavior in Chapters 2 through 19 and review the underlying mathematics in the Calculus Appendix at the end of the book.

Positive Versus Normative

Those are my principles. If you don't like them I have others. -Groucho Marx

Using models of maximizing behavior sometimes leads to predictions that seem harsh or heartless. For instance, a World Bank economist predicted that if an African government used price controls to keep the price of food low during a drought, food shortages would occur and people would starve. The predicted outcome is awful, but the economist was not heartless. The economist was only making a scientific prediction about the relationship between cause and effect: Price controls (cause) lead to food shortages and starvation (effect).

Such a scientific prediction is known as a positive statement: a testable hypothesis about matters of fact such as cause-and-effect relations. Positive does not mean that we are certain about the truth of our statement; it indicates only that we can test whether it is true.

If the World Bank economist is correct, should the government control prices? If government policymakers believe the economist's predictions, they know that the low prices will help consumers who are able to buy as much food as they want, and hurt both the food sellers and those who are unable to buy as much food as they want, some of whom may die from malnutrition. As a result, the government's decision of whether to use price controls turns on whether the government cares more about the winners or the losers. In other words, to decide on its policy, the government makes a value judgment.

Instead of making a prediction and testing it and then making a value judgment to decide whether to use price controls, government policymakers could make a value judgment directly. The value judgment could be based on the belief that "because people should have prepared for the drought, the government should not try to help them by keeping food prices low" or "people should be protected against price gouging during a drought, so the government should use price controls."

These two statements are not scientific predictions. Each is a value judgment, or normative statement: a conclusion as to whether something is good or bad. A normative statement cannot be tested because a value judgment cannot be refuted by evidence.

It is a prescription rather than a prediction. A normative statement concerns what somebody believes should happen; a positive statement concerns what will happen.

Although a normative conclusion can be drawn without first conducting a positive analysis, a policy debate will be more informed if positive analyses are conducted first. ${ }^{4}$ Suppose your normative belief is that the government should help the poor. Should you vote for a candidate who advocates a higher minimum wage (a law that requires firms to pay wages at or above a specified level); a European-style welfare system (guaranteeing health care, housing, and other basic goods and services); an end to our current welfare system; a negative income tax (the less income a person receives, the more that person receives from the government); or job training programs? Positive economic analysis can be used to predict whether these programs will benefit poor people but not whether these programs are good or bad. Using these predictions and your value judgment, you decide for whom to vote.

Economists' emphasis on positive analysis has implications for what they study and even their use of language. For example, many economists stress that they study people's wants rather than their needs. Although people need certain minimum levels of food, shelter, and clothing to survive, most people in developed economies have enough money to buy goods well in excess of the minimum levels necessary to maintain life. Consequently, calling something a need in a wealthy country is often a value judgment. You almost certainly have been told by an elder that "you need a college education." That person was probably making a value judgment-"you should go to college"-rather than a scientific prediction that you will suffer terrible economic deprivation if you don't go to college. We can't test such value judgments, but we can test hypotheses such as "people with a college education earn substantially more than comparable people with only a high school education."

New Theories

One of the strengths of economics is that it is continually evolving, for two reasons. First, economists—like physicists, biologists, and other scientists—are always trying to improve their understanding of the world around them.

For example, traditional managerial textbooks presented theories based on the assumptions that decision makers always optimize: They do the best they can with their limited resources. While we cover these traditional theories, we also present another recently developed approach referred to as behavioral economics, which is the study of how psychological biases and cognitive limits can prevent managers and others from optimizing.

Second, economic theory evolves out of necessity. Unlike those who work in the physical and biological sciences, economists and managers also have to develop new ways to think about disruptive innovations. Although most innovations are incremental, some are sufficiently disruptive to dramatically change the way an industry is structured-or even to create new industries and destroy old ones.

The internet is an example of a disruptive innovation, which led to other disruptions. Online retailing has displaced much traditional brick-and-mortar retailing, online payment systems have largely replaced cash and checks, and online media, especially social media, have changed the way most people acquire and transmit information.

To analyze the economic effects of the internet and other disruptive innovations, economists have extended established theories and developed new ones. For example,

[^3]the internet has given rise to many services that allow two groups of users to interactsuch as auction services, dating sites, job matching services, and payment services. In response, economists have developed the theory of such two-sided markets, which has influenced court decisions and government policy toward such markets. This book describes economic theories of the internet and of two-sided markets, along with other recent developments in economics.

1.3 Uses of Microeconomic Models in Your Life and Career

Have you ever imagined a world without bypothetical situations?
Because microeconomic models explain why economic decisions are made and allow us to make predictions, they can be very useful for individuals, governments, and firms in making decisions. Throughout this book, we consider examples of how microeconomics aids in actual decision making. Here, we briefly look at some uses by individuals and governments.

Individuals use microeconomics to make purchasing and other decisions. Examples include considering inflation when choosing whether to rent an apartment (Chapter 4); determining whether going to college is a good investment (Chapter 15); deciding whether to invest in stocks or bonds (Chapter 16); determining whether to buy insurance (Chapter 16); and knowing whether you should pay a lawyer by the hour or a percentage of any award (Chapter 19).

Microeconomics can help citizens make voting decisions based on candidates' views on economic issues. Elected and appointed government officials use economic models in many ways. Recent administrations have placed increased emphasis on economic analysis. Economic and environmental impact studies are required before many projects can commence. The President's Council of Economic Advisers and other federal economists analyze and advise national government agencies on the likely economic effects of all major policies.

Indeed, often governments use microeconomic models to predict the probable impact of a policy. We show how to predict the likely impact of a tax on the tax revenues raised (Chapter 2), the effects of trade policies such as tariffs and quotas on markets (Chapter 9), and the effects on collusion of governments posting the results of bidding (Chapter 14). Governments also use economics to decide how best to prevent pollution and global warming (Chapter 17).

Decisions by firms reflect microeconomic analysis. Firms price discriminate (charge individuals different prices) or bundle goods to increase their profits (Chapter 12). Strategic decisions concerning pricing, setting quantities, advertising, or entering into a market can be predicted using game theory (Chapter 13). An example in an oligopolistic market is the competition between American Airlines and United Airlines on the Chicago-Los Angeles route (Chapter 14). When a mining company should extract ore depends on interest rates (Chapter 15). A firm decides whether to offer employees deferred payments to ensure they work hard (Chapter 19).

Thus, this book will help you develop skills in economic analysis that are crucial in careers such as those in economics, business, law, and many others. Some of you will get jobs that use economic analysis intensively, such as working as an economist or setting prices or assessing financial investment options for firms. Others will use your knowledge of economics in both your work to analyze the likely outcomes from government actions and other events.

SUMMARY

1. Microeconomics:The Allocation of Scarce Resources. Microeconomics is the study of the allocation of scarce resources. Consumers, firms, and governments must make allocation decisions. A society faces three key trade-offs: which goods and services to produce, how to produce them, and who gets them. These decisions are interrelated and depend on the prices that consumers and firms face and on government actions. Market prices affect the decisions of individual consumers and firms, and the interaction of the decisions of individual consumers and firms determines market prices. The organization of the market, especially the number of firms in the market and the information consumers and firms have, plays an important role in determining whether the market price is equal to or higher than the cost of producing an additional unit of output.
2. Models. Models based on economic theories are used to answer questions about how some change, such
as a tax increase, will affect various sectors of the economy in the future. A good theory is simple to use and makes clear, testable predictions that are not refuted by evidence. Most microeconomic models are based on maximizing behavior. Economists use models to construct positive hypotheses concerning how a cause leads to an effect. These positive questions can be tested. In contrast, normative statements, which are value judgments, cannot be tested.
3. Uses of Microeconomic Models in Your Life and Career. Individuals, governments, and firms use microeconomic models and predictions to make decisions. For example, to maximize its profits, a firm needs to know consumers' decision-making criteria, the tradeoffs between various ways of producing and marketing its product, government regulations, and other factors. You can use economic analysis in many different careers, particularly in economics and business.

[^0]: ${ }^{1}$ The sources for Applications are available at the back of this book.

[^1]: ${ }^{2}$ An engineer, an economist, and a physicist are stranded on a deserted island with a can of beans but no can opener. How should they open the can? The engineer proposes hitting the can with a rock. The physicist suggests building a fire under the can to increase pressure and burst it open. The economist thinks for a while and then says, "Assume that we have a can opener. . . ."

[^2]: ${ }^{3}$ We can use evidence of whether a theory's predictions are correct to refute the theory but not to prove it. If a model's prediction is inconsistent with what actually happened, the model must be wrong, so we reject it. Even if the model's prediction is consistent with reality, however, the model's prediction may be correct for the wrong reason. Hence, we cannot prove that the model is correct-we can only fail to reject it.

[^3]: ${ }^{4}$ Some economists draw the normative conclusion that, as social scientists, we economists should restrict ourselves to positive analyses. Others argue that we shouldn't give up our right to make value judgments just like the next person (who happens to be biased, prejudiced, and pigheaded, unlike us).

